激光网
当前位置: 首页 > 光学 > 正文

Appl. Surf. Sci.:Janus单分子层SiXY用于光催化水分裂

2024-02-28 14:20:16  来源:搜狐    

 

研究背景

人们在寻找高稳定、环保、廉价的新型二维水分裂半导体光催化剂上付出了大量的努力。Janus SiP2单层的内电场使其具有良好的光裂解催化活性。考虑到内部电场是由不同潜在的原子在顶层和底层子层,修改顶层和底层的原子形成可以有效地调整内部电场Janus SiP2单层,进一步提高其光催化水分裂的能力。

集美大学林家和与厦门大学zhang bofeng等人设计了单层SiPN,用N原子取代两个P亚层SiPN。本文进行了内聚能和声子谱计算,表明单层SiPN是高度稳定的,利用(HSE06)杂化泛函的海氏误差估计了单层SiPN的能带结构,包括相对于真空水平的价带最大值(VBM)和导带最小值(CBM)。讨论单层SiPN沿X和Y方向暴露在单轴应变下,并提供了其能带结构、太阳-氢(STH)效率和光吸收的响应来检验单轴应变的影响。

计算方法

所有的第一原理密度泛函理论(DFT)计算均在CASTEP软件包中完成。对于几何优化和声子谱,采用了Perdew-Burke-Ernzerhof (PBE)方案的广义梯度近似(GGA)。单层SiAsP和SiAsN的平面波截断能为770 eV,单层SiAsP、SiSbN和SiSbP的平面波截断能为500 eV,单层SiSbAs的平面波截断能为390 eV。使用能量收敛阈值5.0 × 10-6 eV和力收敛于0.01 eV/Å来获得最佳几何结构。对于单层SiPN、SiAsN、SiAsP、SiSbN、SiSbP和SiSbAs的原始细胞,利用垂直方向20 Å的真空来防止相邻层的相互作用。对于布里渊的k点采样,单层SiAsP、SiSbP、SiSbAs采用1 × 4 × 2 Monkhorst-Pack方案,单层SiAsP、SiSbP、SiSbAs采用1 × 5 × 3 Monkhorst-Pack方案。

结论与展望

图1(a)和(b)为完全松弛的单层SiP2和SiPN。对比图1(a)和(b),我们发现单层SiPN是通过将单层SiP2底层的N原子替换为P原子而形成的。如图1 (b)所示,单层SiPN的晶格常数a和b分别为3.47 Å和4.97 Å。单层SiPN还具有Janus结构,由Si和N原子交替的弯曲蜂窝结构以及锯齿形P链组成。单层SiPN的每一个原子都在其最外层有8个电子,说明单层SiPN的结构是合理的。

为了进一步证实单层SiPN的稳定性,研究了单层SiPN的结合能和声子谱。单层SiPN的内聚能值为−7.91 eV/atom。这表明单层SiPN比其他IV组和V组元素的单层SiPN具有更高的能量。在单层SiPN的声子-色散谱中,软声子模型难以检测,这表明单层SiPN是动态稳定的。此外,还注意到单层SiPN具有较高的光学分支,这可能在动态过程中提供额外的声子吸收和发射通道,并引起强烈的电子-声子散射。通过AIMD模拟,确认了平衡位置周围的总能量,如图1 (d)所示。对应的结构与图2插图中所示的初始结构相比,没有明显的变形、畸变或断裂,说明SiPN单层在室温下是稳定的。

 

 

图1 单分子层SiP2的俯视图和侧视图和稳定性测试

接下来,利用HSE06泛函分析了单层SiPN的电子性质结构。从图3 (a)可以看出,单层SiPN具有2.49 eV的间接带隙,VBM沿S到X路径定位,这表明单层SiPN可以广泛应用于紫外发光二极管和高频电子器件。此外,通过计算单层SiPN的功函数,得到了CBM和VBM相对于真空能级的对齐。从图3 (d)可以看出,还原电位(VH+/H2 =−4.44 eV)略低于VBM(约0.217 eV),氧化电位(VOH/O2 =−5.67 eV)远高于CBM(1.37eV),说明单层SiPN符合光催化水裂解的基本带结构条件。

此外,为了研究不同类型的原子对电子态轨道的贡献,作者计算了单层SiPN的总态密度(TDOS)和部分态密度(PDOS),如图2 (b).所示SiPN的TDOS显示,接近VBM的轨道占据态大于接近CBM的轨道占据态,这可能导致载流子从VBM到CBM的转变更困难,光吸收的第一个峰也更小。详细地说,根据SiPN的PDOS,VBM附近的轨道占据状态对P和N原子的p轨道有显著贡献,而对Si原子的p和s轨道的贡献明显较低。同时,CBM附近的轨道占据态以P和Si原子的p轨道为主,而N原子的p和s轨道的贡献明显较小。CBM和VBM在不同原子中的空间分布有助于激子的分离,提高材料的光催化性能。

 

 

图2 单层SiPN电子性质

如图3(a)和(b)所示,EVGW0 + BSE计算得到的SiPN单层吸收光谱与HSE06计算得到的吸收光谱相比存在明显的红移,且光学间隙较低,这是由于强烈的激子效应。还注意到HSE06计算出的吸收边大于其带隙,这可能是由于间接带结构中的电子不能直接从VBM跃迁到CBM。从图3 (b)可以看出,单层SiPN在可见光范围内具有中等的吸收,但在超强光范围内具有显著的高吸收。但是,值得注意的是,与GaTe、BN基第二类异质结以及磷化硼-蓝磷烯等其他引人注目的2D光催化剂相比,SiPN单分子层在可见光范围内的光学吸收相当小。因此,要成为一种良好的水分解光催化剂,必须以某种方式提高单层SiPN对可见光的吸收。

 

 

图3 .(a)和(b)分别采用HSE06法和EVGW0 + BSE法对单层SiPN的光吸收光谱

以上结果表明,单层SiPN具有理想的光催化水分裂带结构,但由于可见光吸收率低和STH效率一般,其活性可能受到限制。因此,需要对单层SiPN进行进一步的修饰,以提高其光催化性能。如图4所示,作者探讨了在X和Y方向上的单轴应变如何影响单层SiPN的性能。单轴应变定义为η=(a-a0)/ a,其中a0表示应变。

免责声明: 激光网遵守行业规则,本站所转载的稿件都标注作者和来源。 激光网原创文章,请转载时务必注明文章作者和来源“激光网”, 不尊重本站原创的行为将受到激光网的追责,转载稿件或作者投稿可能会经编辑修改或者补充, 如有异议可投诉至:Email:133 467 34 45@qq.com